
Think Fast: A Tensor Streaming Processor (TSP)

for Accelerating Deep Learning Workloads

Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max Baker, Tom Hawkins, Andrew Bell,

John Thompson, Temesghen Kahsai, Garrin Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd, Michael Bye,

E.R. Creswick, Matthew Boyd, Mahitha Venigalla, Evan Laforge, Jon Purdy, Purushotham Kamath,

Dinesh Maheshwari, Michael Beidler, Geert Rosseel, Omar Ahmad, Gleb Gagarin, Richard Czekalski,

Ashay Rane, Sahil Parmar, Jeff Werner, Jim Sproch, Adrian Macias, Brian Kurtz

Groq, Inc. · Mountain View, California

Abstract—In this paper, we introduce the Tensor Streaming
Processor (TSP) architecture, a functionally-sliced microarchitec-
ture with memory units interleaved with vector and matrix deep
learning functional units in order to take advantage of dataflow
locality of deep learning operations. The TSP is built based on
two key observations: (1) machine learning workloads exhibit
abundant data parallelism, which can be readily mapped to
tensors in hardware, and (2) a simple and deterministic processor
with producer-consumer stream programming model enables
precise reasoning and control of hardware components, achieving
good performance and power efficiency. The TSP is designed
to exploit parallelism inherent in machine-learning workloads
including instruction-level, memory concurrency, data and model
parallelism, while guaranteeing determinism by eliminating all
reactive elements in the hardware (e.g. arbiters, and caches).
Early ResNet50 image classification results demonstrate 20.4K
processed images per second (IPS) with a batch-size of one—
a 4× improvement compared to other modern GPUs and
accelerators [44]. Our first ASIC implementation of the TSP
architecture yields a computational density of more than 1
TeraOp/s per square mm of silicon for its 25×29 mm 14nm chip
operating at a nominal clock frequency of 900 MHz. The TSP
demonstrates a novel hardware-software approach to achieve
fast, yet predictable, performance on machine-learning workloads
within a desired power envelope.

I. INTRODUCTION

The world is increasingly turning to computationally-

intensive deep learning algorithms to solve important problems

in science, transportation, security, and beyond. These work-

loads continue to grow both in size and complexity, presenting

serious scalability, performance, and usability challenges for

traditional CPU and GPU architectures. Keeping pace with

this demand requires that we provision abundant on-chip

ALUs and utilize them at near-peak performance throughout

program execution. Unfortunately, hardware complexity of

many microarchitectures makes it difficult to reason about

runtime stalls. Furthermore, while microarchitectural enhance-

ments such as caches, branch predictors, and prefetchers help

tremendously in improving performance, they do not bound

worst-case performance.

Over the last decade, data center operators have installed

many-core systems as a stalwart fixture in warehouse-scale

Fig. 1. Conventional 2D mesh of cores (a) reorganized into a functionally
sliced arrangement of tiles (b).

computers (WSC) [7], [11], [13]. These increasingly hetero-

geneous systems have dozens of processing cores that vary

widely in form and function, including GPUs, TPUs, FPGAs,

and smart IO controllers for efficient remote direct memory

access. Such efforts have largely focused on accelerating deep

neural network training and inference performance for a wide

range of workloads: convolutional neural networks (CNNs)

for recommendation algorithms, computer vision (CV) and

image classification; recurrent neural networks (RNNs) for

natural language processing [20], [58]; and now attention and

transformer models [10], [55]. The increased computational

requirements of these models has been the catalyst for a

resurgence of architectural innovation [21].

The demand for domain-specific architectures, as well as

their widespread adoption into cloud computing ecosystems

[34], [48], provides a unique opportunity for novel microar-

chitectures targeting deep learning applications. A range of

innovative solutions are emerging—from Cerebras’ wafer-

scale integration [15] to more traditional chip multiprocessors

like GraphCore’s IPU [25]. Broadly speaking, all of these

efforts are focused on delivering more compute capability per

floor tile in the data center. In other words, the focus is on

145

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00023

increasing computational density for a fixed power envelope.

Our approach is based on rethinking conventional chip multi-

processor organization, resulting in a new architecture centered

around the tensor abstraction, a Tensor Streaming Processor

(TSP). The TSP uses a tiled microarchitecture that allows us to

easily scale vector size to the underlying tensor shapes which

they represent. Tensor computations are performed using a

streaming processing model where computational elements are

arranged spatially by function to take advantage of dataflow

locality as tensors flow past. This novel approach enables us

to achieve significantly better performance than the state of

the art, with initial Resnet50 image classification results of

20.4K sample images per second (IPS) using a batch-size of

one—a 4× improvement compared to other modern GPUs and

accelerators [44]. In the remainder of this section, we discuss

the core architectural elements that set the TSP apart.

A. Functional slicing

To understand the novelty of our approach, consider the

chip organization shown in Figure 1(a). In a conventional chip

multiprocessor (CMP) [56] [12] each “tile” is an independent

core which is interconnected using the on-chip network to

exchange data between cores. Instruction execution is carried

out over several stages [46]: 1) instruction fetch (IF), 2)

instruction decode (ID), 3) execution on ALUs (EX), 4)

memory access (MEM), and 5) writeback (WB) to update the

results in the GPRs. In contrast from conventional multicore,

where each tile is a heterogeneous collection of functional

units but globally homogeneous, the TSP inverts that and

we have local functional homogeneity but chip-wide (global)

heterogeneity.

The TSP reorganizes the homogeneous two-dimensional

mesh of cores in Figure 1(a) into the functionally sliced

microarchitecture shown in Figure 1(b). In this approach, each

tile implements a specific function and is stacked vertically

into a “slice” in the Y-dimension of the 2D on-chip mesh.

We disaggregate the basic elements of a core in Figure 1(a)

per their respective functions: instruction control and dispatch

(ICU), memory (MEM), integer (INT) arithmetic, float point

(FPU) arithmetic, and network (NET) interface, as shown by

the slice labels at the top of Figure 1(b). Each row of the 2D

on-chip mesh contains a cross section of all functional slices

(see Figure 2). In this organization, each functional slice is

independently controlled by a sequence of instructions specific

to its on-chip role. For instance, the MEM slices support Read

Fig. 2. The organization and dataflow within a row in the on-chip network.

and Write but not Add or Mul, which are only in arithmetic

functional slices (the VXM and MXM slices).

All of a slice’s tiles execute the same instruction stream

(SIMD), so we can factor out the common instruction decode

and dispatch logic into its own tile (ICU) and decompose

the normal instruction execution pipeline into two areas:

(i) instruction fetch, decode, and parceling and (ii) operand

read, execute, and writeback. This approach decouples the

memory subsystem [52] from the functional units retrieving

their operands and depositing results. Each functional slice

implements a 20-stage vector pipeline that spans the tiles of

each slice, with each tile producing 16 elements of the 320-

element maximum vector length. This organization naturally

decomposes instruction flow in the vertical dimension, and

data flow in the horizontal dimension as it passes over different

function types. With this processor organization, instruction

execution is carried out by different tiles: instruction fetching

and decoding in the ICU and operand decode, execution and

writeback at each tile of functional slice as the (vertical

flowing) dispatched instruction intersects with the (horizontal

flowing) operand data on which it is operating.

B. Parallel lanes and streams

Data parallelism for each slice’s SIMD execution is pro-

vided via a programming abstraction called parallel lanes.

These parallel lanes correspond to elements of data vectors, an

abstraction common to many ML frameworks like TensorFlow

[2]. In the TSP model, instructions flow Northward from

the ICUs to the functional slices, while data (operands and

results) flow East and West between functional slices. Any

inter-lane data movement within a vector uses the on-chip

network (SXM) slice.

As shown in Figures 1 and 5, the on-chip network is im-

plemented as X-dim mesh and Y-dim mesh of tiles with X-Y-

X dimension order routing. Each instruction specifies the first

hop direction (East or West), so memory instruction semantics

have both an address and a dataflow direction (Figure 2).

Streams are routed in the X-dimension through MEM, and

routed in the Y-dimension using the SXM’s permuter and lane-

shifters to move data elements vertically. The MEM and SXM

provide deterministic routing [16] of stream data as it flows

in the X and Y dimensions, respectively.

Each element of a stream is 1-byte with larger data types

(e.g. int16, int32, and fp32) being constructed from several

streams (2, 4, and 4 respectively). Multi-byte data types are

always naturally stream-aligned based on the size of the data

type. Data alignment is accomplished by the compiler. For

instance, int16 is aligned on a stream pair, and int32 is aligned

on a quad-stream (e.g. SG4 0 is stream 0-3, SG4 1 is streams

4-7, and so forth).

In a conventional load-store architecture the general-purpose

registers (GPRs) provide fast access to ALU operands and

storage of ALU outputs. As an example, consider a simple

sum of two N-element vectors, X and Y, to produce result Z,

as shown in Figure 3. In this example, a RISC core will loop

on four instructions to perform an element-wise addition: the

146

Fig. 3. Conventional RISC execution contrasted with producer-consumer
streams in the TSP.

Add R1,R2,R3 would first need a LOAD R1,X and a LOAD

R2,Y to move the operands into the GPRs, and the result

in R3 must be written back to main memory with STORE

R3,Z. With the TSP architecture, functional slices interact

with streams of data in a producer-consumer fashion. That

is, they consume operands from streams and produce results

onto a (possibly different) stream, similar to an assembly line

operator (functional slice) and conveyor belt (stream).

Conceptually, the functional slices are fixed and data is

flowing across their processing elements as shown in Figure

2. As the data flows through the slice, each functional unit can

optionally intercept the data operands and compute a result (if

its a processing element like an ALU), or move data between

lanes on the network if its a switching element.

Streams provide a programming abstraction and are

a conduit through which data flows between functional

slices. Unlike GPRs, the functional slices operate on streams of

parallel data flowing East or West across chip. The horizontally

flowing streams carrying operands intercept the vertically

(Northward) flowing instructions (Figure 2) to perform a com-

putation on a functional slice. The compiler precisely tracks

the chip’s architectural state and uses that knowledge to ensure

that instructions correctly intercept its stream operand(s).

Streams are implemented in hardware by a chip-wide

streaming register file (SR). They are architecturally-visible

and transport operands and results between slices. A common

software pattern involves reading operand data from one or

more MEM slices that is then subsequently consumed and

operated on by a downstream arithmetic slice. The results of

the operation are then produced onto another stream such that

they can be written back to memory. For example, a Z=X+Y

operation might require four instructions: Read S1,X and

Read S2,Y are executed on two MEM slices and directed

inward toward an INT slice to perform the Add S1,S2,S3.

Lastly, the result is stored back to memory via a Write

S3,Z. The streams represent a collection of N -elements,

operated upon in a SIMD manner by each functional slice.

C. Paper organization

The remainder of this paper describes the microarchitec-

ture of the Groq tensor streaming processor (TSP) with the

following contributions:

• we introduce functional-sliced tile microarchitecture and

the stream programming abstraction built upon it;

• we describe our first implementation of the TSP in 14nm

ASIC technology, memory system and functional units,

programmimg model, instruction set architecture (ISA)

and design tradeoffs for efficient operation at batch-size

of 1;

• we present early performance results on ResNet50 [27]

image classification model executing a sample image

query in less than 49µs, yielding 20.4K IPS of batch-size-

1 inference throughput, a 4-5× improvement compared

to Google’s TPU or Habana Lab’s GOYA chips; and

• we provide a detailed discussion of architecture trade-

offs for accelerating machine learning workloads more

generally, and lessons learned from mapping ResNet50

v2 image classification model to the TSP hardware.

II. ARCHITECTURE OVERVIEW

The tensor stream processor architecture makes several de-

liberate tradeoffs on the hardware-software interface, pushing

the complexities associated with scheduling into the compiler.

Specifically, it falls on the compiler to precisely schedule

instructions so as to use the hardware correctly and efficiently.

At times this may involve selecting one of several means by

which an algorithm or meta-operation may be realized on

the hardware. Removing the control complexity of dynamic

instruction scheduling for multi-issue execution units allows

the instruction control unit (ICU) to be relatively small,

accounting for less the 3% of the area. The compiler has access

to the following architecturally-visible state:

• 320-lane programming abstraction overlaid on the

TSP block diagram (Figure 5) where each tile in the

on-chip mesh operates on 16-lanes in a SIMD manner.

We refer to this 16-lane unit as a “superlane” which

is a cross-section of all the functional slices on the

chip and the minimum granularity of computation. As

such, a superlane represents the architecture’s minimum

vector length, minVL, of 16 elements. Likewise, the

vertical composition of 20 tiles to form a functional slice

(Figure 5) produces a maximum vector length, maxVL,

of 20×16=320 elements.

• 144 independent instruction queues (ICUs) on-chip,

each can issue one or more instructions per cycle and

the compiler has explicit control of the program order in

each instruction queue.

• 64 logical streams per lane for moving operands or

results on-chip with 32 streams Eastward, and 32 streams

Westward as shown in Figure 2.

• 220 MiBytes of globally shared SRAM that delivers

32 bytes per lane of stream bandwidth and low-latency

access to model parameters. For example, the MEM can

read and MXM can install 400K weights into all four

320×320 arrays in less than 40 cycles including SRAM

and on-chip network transit delay.

Streams are designated by both an identifier 0..31 and

direction, for instance, in(28) designates stream 28 inward, and

out(24) is stream 24 toward the outward edge of the chip1.

1We use both inward (toward the chip bisection) and outward (toward
the outward edge of the chip) as well as cardinal directions Eastward and
Westward as shown in Figures 2 and 4.

147

Fig. 4. Stream registers are numbered to show their locations between the functional slices within a superlane.

The components of a superlane are organized spatially as

shown in Figure 2. The TSP’s instruction set architecture (ISA)

defines instructions spanning five different functional areas.

The partitioned global address space (PGAS [6]) presented

by the memory (MEM) slices provides memory semantics

for vectors to be addressed from SRAM and loaded into

an architecturally-visible stream with a direction of dataflow

Fig. 5. Die photo of 14nm ASIC implementation of the Groq TSP.

toward the functional slice intending to operate on them.

1) The instruction control unit (ICU) provides explicit

instruction fetching with IFetch, and inter-slice syn-

chronization using Sync and Notify instructions to

perform a chip-wide barrier synchronization among par-

ticipating functional slices. A repeated-NOP (no-op) in-

struction allows for precise cycle-by-cycle control of

inter-instruction delay; for example, the compiler has

cycle-accurate control when scheduling two operations A
and B using an intervening NOP so that N cycles separate

them OpA NOP(N) OpB.

2) A vector execution module (VXM) consists of a 4×4

mesh of ALUs in each lane for point-wise arithmetic

operations.

3) The matrix execution module (MXM) consists of four

(4) independent 2D MACC (multiply-accumulate) arrays

that operate on int8 or fp16 data types.

4) On chip data movement uses the switch execution mod-

ule (SXM) for intra-superlane and inter-lane switching by

rearranging elements of vectors. The SXM is analogous

to the NET interface to communicate between cores in

Figure 1. Together the MEM and SXM work in tandem

to form the X-Y dimensions of the on-chip network.

5) The East and West hemisphere of on-chip memory

module (MEM) is composed of 44 parallel slices of

SRAM and provides the memory concurrency necessary

to fully utilize the 32 streams in each direction. Each

slice provides 13-bits of physical addressing of 16-byte

memory words, each byte maps to a lane, for a total of

220 MiBytes of on-chip SRAM.

6) Chip-to-chip (C2C) modules provide Send and

Receive primitives for exchanging 320-byte vectors

between a pair of chips. The first TSP implementation

(Figure 5) has a total of sixteen (16) ×4 links operat-

ing at 30 Gbps each for a total off-chip bandwidth of

148

Function Instruction Description

ICU

NOP N No-operation, can be repeated N times to delay by N cycles
Ifetch Fetch instructions from streams or local memory
Sync Parks at the head of the instruction dispatch queue to await barrier notification

Notify Releases the pending barrier operations causing instruction flow to resume
Config Configure low-power mode

Repeat n, d Repeat the previous instruction n times, with d cycles between iterations

MEM

Read a,s Load vector at address a onto stream s

Write a,s Store stream s register contents into main memory address a

Gather s, map Indirectly read addresses pointed to by map putting onto stream s

Scatter s, map Indirectly store stream s into address in the map stream

VXM

unary operation z = op x point-wise operation on 1 operand, x, producing 1 result, z (eg. mask, negate)
binary operation z = x op y point-wise operations with 2 operands x and y producing 1 result, z (e.g. add, mul, sub)
type conversions Converting fixed point to floating point, and vice versa

ReLU Rectified linear unit activation function max(0,x)
TanH Hyperbolic tangent - activation function
Exp exponentiation ex

RSqrt Reciprocal square root

MXM

LW Load weights (LW) from streams to weight buffer
IW Install weights (IW) from streams or LW buffer into the 320×320 array
ABC Activation buffer control (ABC) to initiate and coordinate arriving activations
ACC Accumulate (ACC) either INT32 or FP32 result from MXM

SXM

Shift up/down N Lane-shift streams up/down by N lanes, and Select between North/South shifted vectors

Permute map Bijective permute 320 inputs
map

−−−→outputs
Distribute map Rearrange or replicate data within a superlane (16 lanes)

Rotate stream Rotate n× n input data to generate n2 output streams with all possible rotations (n=3 or n=4)
Transpose sg16 Transpose 16×16 elements producing 16 output streams with rows and columns interchanged

C2C
Deskew Manage skew across plesiochronous links
Send Send a 320-byte vector

Receive Receive a 320-byte vector, emplacing it in main memory

TABLE I
SUMMARY OF INSTRUCTIONS FOR EACH FUNCTIONAL SLICE.

16×4×30Gb/s ×2 directions = 3.84 Tb/s of off-chip pin

bandwidth that can be flexibly partitioned to support high-

radix [37] [49] [3] interconnection networks of TSPs for

large-scale systems. The host interface for PCIe Gen4 is

also handled in this module. It provides a lightweight

DMA engine to emplace a model onto the TSP memory,

and provides an entry point for bootstrapping the model

execution. It also provides a general mechanism for

passing interrupts to the host, which may be necessary

in the event we observe a multi-bit memory error, for

example.

A sequence of instructions performed on different functional

slices can be chained to create more complex actions without

the need to writeback intermediate results to memory. This

allows us to efficiently process streams at full bandwidth and

lowest latency.

A. Parallel streams programming model

Machine learning algorithms typically operate on vectors

with coefficients of a specified data type (eg. int8, fp16, etc).

We may interpret these vectors as an abstraction over the

underlying data, whose elements can be processed by the same

operation in a SIMD manner. The TSP operates on vectors,

sometimes organized into rank-2 tensors, and relies on the

graph-lowering compiler to transform higher rank tensors into

rank-2 tensors over hardware-supported data types.

The TSP’s programming model is a producer-consumer

model where each functional slice acts as a consumer and

a producer of one or more streams. When a vector is read

from main memory it is given a stream identifier (0..31) and

direction: eastward, or westward. Once the vector is read

into a stream register it is a stream and is “flowing” in the

given direction in the following sense: Given spatially-adjacent

functional slices at coordinates x0, x1, x2 (where the spatial

coordinate increases in the direction of flow), then at a given

time ti, the vector representing stream s1 at slice x1 can be

accessed as operands by that slice. Similarly, the slices at x0

and x2 will have access to different stream values for the

same stream register. In the following cycle ti+1, the value

s1 either propagated to the functional slice at x2, or else it

is overwritten with a result r1 produced by the slice at x1 at

cycle t. Similarly, the stream value s0 that was present to be

consumed by the functional unit at coordinate x0 at time ti will

be (absent x0 overwriting the value at time ti) available in the

next cycle ti+1 to the slice at x1. Stream operands are steered

toward the slice that is consuming them and producing a result

stream. Streams are constantly flowing across the chip, serving

as the means by which slices communicate with one another.

Figure 4 provides a graphical depiction of the interleaving of

functional units and stream registers that combine to support

this programming model.

B. Memory model

The on-chip memory supplies operands for each functional

slice by reading an address from a memory (MEM) slice,

denoted MEMi. Memory is partitioned into two hemispheres

(Figure 5), each having 44 slices numbered 0 to 43 with

slice MEM0 closest to the VXM and MEM43 nearest to the

SXM. Each MEM slice comprises 20 tiles, arranged in a

vertical stack, yielding a 2.5 Mibyte per-slice capacity, or

149

220 MiBytes for all 88 slices on-chip. The 88 slices provide

the needed memory concurrency to supply 32 operands per

lane, every cycle. Slices of memory are partitioned into 16-

byte words, each word spread across a superlane, and each

byte of each word occupying a lane of an input channel

or an output feature. That is, byte 0 is lane0, byte 1 is

lane1, and so forth. Each tile produces a ×16 portion of the

vector, which is concatenated with the 16 elements from the

adjacent tile beneath. Instructions execute in a cycle-by-cycle

staggered manner across all 20 tiles in the slice; instructions

flow Northward over the span of 20 cycles visiting each tile

in the slice.

For the sake of exposition, assume a 1 GHz operating

frequency of the core clock. The stream register bandwidth, B,

exported by each MEM interface on the East and West edge

of each MEM hemisphere is capable of keeping the functional

units adequately fed with data operands in order to saturate the

peak arithmetic capacity of the functional units. The stream

registers provide a combined capacity of 20 TiB/s of read

(operand) and write (result) bandwidth, as shown in Eq. 1.

B = 2 directions× 32
bytes

lane
× 320 lanes = 20 TiB/s (1)

Since the SRAM banks are shuttling data between the stream

registers and SRAM cells, the SRAM bandwidth, M , must

exceed the stream bandwidth B. The SRAM bandwidth of

on-chip memory is given in Equation 2.

M = 2 hem × 44
slices

hem
×2

banks

slice
× 320

bytes

cycle
= 55 TiB/s

(2)

on-chip memory bandwidth, or 27.5 TiB/s of SRAM band-

width in each hemisphere.

Instruction fetching (further described in Section III-A3)

consumes a maximum SRAM bandwidth of 144×16, or 2.25

TiB/s of maximum instruction fetch bandwidth. Each MEM

hemisphere exports 20 TiB/s of stream bandwidth from its

27.5 TiB/s of SRAM bandwidth which must also satisfy

the maximum instruction issue rate of 2.25 TiB/s across all

functional slices. With 27.5 TiB/s of SRAM bandwidth and

2.25 TiB/s of instruction fetch bandwidth, this still leaves 25

TiB/s of SRAM bandwidth from which to service 20 TiB/s of

stream register bandwidth for operands and results.

C. Staggered instruction execution

In the TSP programming model, an instruction is issued

on a functional slice at a given compiler-scheduled time t,
and executes as a SIMD operation on stream-supplied operand

vectors (of up to 320-elements), producing vectors of the same

length on result streams. At the micro-architectural level, the

320-element SIMD instruction is pipelined across the vertical

stack of tiles in the slice. That is, at the scheduled time

t the instruction will be issued to the bottom-most tile of

the slice, (corresponding to the first 16-element superlane of

operand/result vectors). In the subsequent cycle, the instruction

will be propagated to the next tile northward in the slice,

which in turn executes the instruction on the next 16-element

super lane of operand vectors. This process continues cycle-

by-cycle until it has traversed all 20 tiles in the slice. The

combination of vertical instruction pipelining described above,

along with the need for operands and instructions to coincide

at a precise time, results in a spatial “stagger” of SIMD

operand and result data as depicted in Figure 6. As shown,

a single 320-byte vector, represented as 20 black squares, are

moving eastward along a stream. The data for successive 16-

element superlanes are lagging by 1 cycle to accommodate

the pipelined execution of an MXM instruction issued to the

southern-most tile depicted at time t1.

D. Error handling and reliability

Large scale deployments within warehouse-scale computers

[11] require hardware-based error correction when possible to

be resilient in the face of transient errors. The error correcting

code (ECC) used to protect vectors in SRAM memory is also

used as they flow on the stream registers on-chip. Since the

memory system is highly banked and replicated, we want to

avoid replicating the XOR-tree for computing ECC across a

wide, 128-bit, memory word. Instead, we take advantage of the

producer-consumer nature of the stream programming model

and generate ECC check bits only at the producer and they are

stored alongside the 128-bit memory word as 9-bit ECC, 137-

bits in total. The ECC scheme implements SECDED (single-

error correction with double-error detection) to allow us to

tolerate a single-bit error in the memory word or anywhere

along the streaming data path. When a functional slice is going

to operate on a stream, ie. consume a stream, it will check the

ECC bits to ensure data integrity before operating on it. This

mechanism covers both the SRAM soft errors, any datapath

soft errors that might arise in the stream registers.

Any soft error upsets (SEUs) on operands or instruction text

are automatically corrected and recorded in a control and status

register (CSR) for an error handler to interrogate later. These

transient soft errors and automatic corrections are an early sign

of wearout and often used as a proxy for identifying marginal

chips in large-scale systems.

E. Chaining functional slices

Each functional slice has a predefined set of instructions

(eg Read, Write, Add, Mul, etc) that define its supported

operations. Furthermore, functional slices consume operands

from and produce results to streams. A more complex se-

quence of operations, a microprogram, is composed of one

Fig. 6. Staggered instruction execution and dataflow within a superlane.

150

or more slices coordinating in a producer-consumer manner

to create one or more output streams. This is accomplished

by logically “chaining” multiple slices together to consume

input data from up-stream slices, operate on that data to

produce a new result stream, where it later can be consumed

by a down-stream slice in a similar manner. In general, each

functional slice can choose the direction of its result stream,

so that streams can be logically “turned around” (ie. reverse

their direction of flow from East-to-West, or vice versa) at

any slice. With this cooperative producer-consumer model

operating on data streams we can compose more elaborate

operations by chaining together different functional slices as

shown in Equation 3 below, where a composite function, F ,

is an amalgam of several functional slices chained together.

F (x, y, z) = MEM(x) → SXM(y) → MXM(z) (3)

This dataflow composition allows us to exploit “data flow

locality” by passing the same data across multiple functional

slices which can optionally operate on the data to produce

some output stream. The output from one functional slice

can be used as the input to another slice allowing for logical

chaining of operations through a common stream register.

F. Scalable vectors

The underlying data type supported by the TSP hardware

is a vector. The number of elements in each vector can vary

from 16 elements, one superlane, all the way to 320 elements

using all 20 superlanes on-chip. That is, the minimum vector

length, or minVL, is 16 bytes and maxVL is a 320 byte-sized

element array. A maxVL of 320 bytes is comparatively long

compared to typical SIMD extensions to x86 (e.g AVX512b

[31]). Because the vector length (VL) can vary from 16 to

320 elements, we provide instructions to configure each tile

for a low-power mode to effectively power-down any unused

superlane (row of the mesh) and reduce the power consumed.

This scalable vector approach allows us to grow the VL from

16 to 320 bytes in 16-lane steps, powering-down the unused

tiles, yielding a more energy-proportional [14] system.

III. INSTRUCTION SET

The TSP’s instruction set architecture (ISA) exposes tempo-

ral information about each instruction to allow the compiler

precise control of each instruction’s dispatch time. We aug-

ment each instruction with the following temporal parameters:

• dfunc functional delay — each instruction requires 1

or more cycles to produce its stream output. The dfunc
timing parameter allows the compiler to reason about

when the output of an instruction will be available on

the architecturally-visible stream registers.

• dskew instruction-operand skew — the timing rela-

tionship between the instruction dispatch time relative

to when its stream operands are required. The dskew
parameter on each instruction informs the compiler how

to schedule the operand arrival times with the instruction

dispatch time in order to get them to properly intersect

in time and space.

The parameters are necessary to track the exact spatial re-

lationship between instructions and operands. Conceptually,

the compiler is solving a two-dimensional scheduling of in-

structions and data in both time and space (ie. stream register

location on-chip as shown in Figure 4). The execution time

of an instruction includes the instruction functional delay,

and stream propagation (transit) delay to get from stream

register location i (SRi) to j (SRj), as shown in the superlane

dataflow in Figure 4.

T = N + dfunc + δ(j, i) (4)

In Equation 4 the time, T , executing an instruction where N
is the number of tiles in the functional slice, and dfunc is

the functional delay of the instruction being executed (cycles)

for the output stream to appear on the SRi (stream register

at location i in Figure 4) en route to the consumer at SRj .

The transit delay, δ(j, i) is the distance (in cycles) between

SRj and SRi. The TSP programming model relies on two

critical elements: (1) deterministic data paths in hardware,

and (2) exposing temporal information about an instruction’s

execution latency through the ISA, the compiler’s back-end

can precisely track the position and time-of-use of any stream

on-chip. Exposing this additional temporal information across

the static-dynamic interface [43] giving rise to “software-

defined hardware.”

The remainder of this section provides an summary of

the different instructions available on each functional slice.

We discuss each functional slice type and give examples in

assembly language.

A. Instruction control unit (ICU)

The instructions in the instruction control unit (ICU) are

common to all functional slices. As such, they contain com-

mon instructions like NOP and Repeat, and synchronization

primitives Sync and Notify to allow the independent func-

tional slices to be initially synchronized so the compiler can

reason about instruction execution times and allow cooperative

parallelism among the functional slices on-chip.

1 import groq.api as g

2 x = g.random_tensor(shape=[1024, 320],

3 dtype=g.Int8)

4 y = g.random_tensor(shape=[1024, 320],

5 dtype=g.Int8)

6 x_strm = x.read(stream=’S_0’)

7 y_strm = y.read(stream=’S_4’)

8 z = g.add(x_strm, y_strm, stream=’S_0’)

9 out_addrs = g.malloc([1024, 320])

10 z.write(out_addrs)

Listing 1. Streaming Add from example in Figure 3.

1) No-op: The compiler uses explicit NOPs to provide tem-

poral separation between two instructions in program order. A

NOP has a repeat count 16-bit field which allows 1 NOP to

wait from 1 ns up to 65 µs for a 1GHz clock. The compiler

uses NOP instructions to control the relative timing of the

functional slices and the data on which they operate. The

repeated NOP is implemented in the ICU’s tile and common to

151

all functional slices. The NOP allows the slice to turn off the

clock enables when NOP-ing for anything longer than a few

cycles. While NOP is likely the most common instruction, it

is not programmer-visible in as much as the compiler inserts

them implicitly.

2) Synchronization: Each functional slice is independent,

however, the compiler keeps track of a logical program time.

Conceptually it is similar to a program counter in a con-

ventional CPU, except the compiler tracks the state of 144

independent program queues on a cycle-by-cycle basis. So at

logical time t the compiler knows the state of each IQ on

the chip. We use a NOP instruction to coordinate the temporal

relationship between instructions in the same IQ, or between

instructions in different IQs. In addition to repeated-NOPs

we must provide a higher-level synchronization across all

functional slices on the chip in order to reason about program

correctness. That is the role of the Sync and Notify in-

structions. They provide a barrier synchronization mechanism

across all 144 independent queues on the chip. One IQ is

designated as the notifier and it issues a Notify instruction

while all other IQs are parked on a Sync instruction — receipt

of the Notify is broadcast to all the IQs to satisfy the pending

Sync and begin processing instructions again.

This barrier synchronization is only required once after the

chip resets. However, in practice, we start each program with

a set of “preamble” instructions which configure each tile then

perform a Sync to ensure that all functional slices are aligned

to the same logical time. A chip-wide barrier synchronization

can be accomplished in 35 clock cycles, from the time the

Notify is issued to the time the Sync is satisfied and retired

to allow subsequent instructions to flow. After this compulsory

barrier synchronization, the functional slices can compute and

communicate results in a synchronization-free manner through

the stream registers and reason about program correctness

using a simple timing model (Figure 4) of the chip.

3) Instruction fetching: The Ifetch instruction has a

single stream operand which carries the text of the instructions

in their program order, filling the IQ with 640-bytes (a pair

of 320-byte vectors) of instructions. All functional slices

can fetch instructions simultaneously with normal instruction

execution. The compiler performs omniscient prefetching of

the program’s text to keep all 144 IQs busy on each cycle by

inserting Ifetch instructions into every slices’ instruction

stream. It is imperative that IQs never go empty so that a

precise notion of “logical time” is maintained across the chip.

B. Memory (MEM)

The memory (MEM) slices provide the programming ab-

straction of a partitioned global shared address space with

the address space laid out uniformly across the 88 slices.

Each MEM slice contains pseudo-dual-port SRAMs that are

capable of servicing a pair of read and write requests

simultaneously assuming they are not targeting the same bank.

As such, we expose the bank bit so that the compiler can

manage the underlying SRAM efficiently and appropriately.

This allows the compiler to take advantage of up to 176-way

Fig. 7. The MXM block diagram showing activations and weights being
loaded at the side of the array, and INT32 or FP32 results flow back from
the inside edge.

memory concurrency—88 slices each with 2 banks—to read

operands to or store results from streams.

Each MEM slice supports both direct and stream-indirect

addressing modes. Read and write use direct addressing,

since the address is fully specified in the instruction itself.

Indirect addressing uses the contents of a stream, s, to specify

an address map for a gather or scatter. With indirect

addressing, the physical address comes from the stream value,

providing a layer of indirection in the memory referencing.

C. Vector (VXM) processor

Each superlane implements a 4x4 mesh of vector ALUs

capable of doing ×16-SIMD computations — 16 vector ALUs

per lane. Each of the ALU’s 32-bit input operands are orga-

nized along naturally aligned quad-stream group (SG4). The

vector ALUs do not produce condition codes or status flags

from the last instruction; they are stateless. Instead, the VXM

provides both saturating and modulo variants (add_sat,

add_mod and mul_sat, mul_mod) for addition and mul-

tiplication, which allows differing semantics for handling

arithmetic exceptions. The TSP supports chaining together two

or more vector ALUs within each lane, allowing multiple

ALU operations to be performed without committing the

intermediate results to main memory, saving a write and

subsequent read of each intermediate result. This allows for

efficient parallel implementations of algorithms for batch nor-

malization, quantization, or more complex activation functions

like leaky ReLU activation function, for instance.

D. Matrix execution module (MXM)

The matrix execution module (MXM) provides four (4) in-

dependent 320×320 (Figure 7) planes of multiply-accumulate

(MACC) units. Each 320×320 plane is comprised of 20

16×16 supercells that produce a partial-sum each cycle and

pass it to the adjacent tile for use in its computation. It requires

16 streams each with 16 bytes to install 256 8-bit weights

(IW) in each supercell on every cycle. Using all 32 streams

in each direction allows us to emplace weights in both MXM

planes simultaneously on both MXM hemispheres, loading all

409,600 weights on-chip in less than 40 cycles. With weights

installed, every cycle the MXM can generate a new int32

dot-product of input activations with installed weights. The

152

Fig. 8. The SXM provides a combination of North (up) and South (down)
shifting operations which can be combined using the select.

features output from the MXM can be accumulated using the

accumulators on each int32 or fp32 output stream.

The MXM supports numerics for both 8-bit integer, and

16-bit floating point by using two 320×320 byte-planes in

tandem for 16-bit floating point results. The 320-element sum

is produced for each output with only a single rounding step

at the end to convert to int32 or fp32 results.

E. Switch execution module (SXM)

The switch execution module (SXM) contains several func-

tions for transposition, permutation, shifting and rotation of

data elements. Collectively, these operations are used for per-

forming tensor reshape operations common to ML workloads,

and fulfill the functionality of the NET slice in Figure 1. Data

movement on-chip is carried out by routing data in two dimen-

sions: horizontally propagating streams in the X-dimension

shuttling between SRAM and functional units within each

superlane, and vertically in the Y-dimension where the SXM

is used to move streams in the North-South directions. The

SXM provides two sets of lane shifters that execute shift

instructions (Figure 8) both North and South. The lane-shifters

are usually allocated in pairs since we typically shift a vector

up or down and select which elements we want from either

(i) North-shifted, (ii) South-shifted, or (iii) unshifted data

elements, as shown in more detail in Figure 8. In addition,

the SXM provides a permute instruction which employs

a programmed bijection to remap the 320 lanes on a set of

similarly indexed streams, one per superlane.

The distributor slice within the SXM is used to arbitrarily

remap the 16 lanes within each superlane. As streams pass

through the distributor, they can be remapped at full band-

width, or zero-fill any or all of the 16 elements. This provides

a very efficient mechanism for common tensor operations like

zero padding or rearranging elements of a 4x4 filter.

Transposing the dimensions of a tensor is a very common

operation on tensor data types. The TSP supports a two-

dimension transpose of 256 elements organized as 16 streams

each with 16 elements. A transpose operation takes 16

incoming streams and produces 16 output streams with the

rows and columns exchanged. This allows us to efficiently

move data from the atomic 16-byte MEM word into 16

different MEM slices where they are now addressable. There

are two instances of the SXM on-chip, one in each hemisphere

(Figure 5). Each can issue two (2) transpose instructions,

yielding a maximum of four (4) simultaneous transpose

16x16 operations.

IV. RESNET50

In this section we describe our early results and lessons-

learned from implementing ResNet50 [27], a popular image

classification model, on the TSP hardware. In the process

of bringing up new hardware, the software stack is critical

for mapping the underlying tensor operations to the TSP’s

instruction set that implements them. The compiler is also

responsible for memory management of tensors (weights and

activations) and program text which describes the model itself.

The MEM system provides the compiler with a flat, globally

shared address space, with 220 Mibytes of total capacity. As a

matter of policy, the compiler reserves several MEM slices to

serve as “instruction dispatch” slices where the machine-coded

instructions are stored and supplied on streams to service

Ifetch instructions on different functional slices where the

instructions will eventually be executed.

As a broad objective, the model implementation seeks to

maximize functional slice utilization, and minimize latency.

This means we want to take advantage of streaming operands

into the MXMs and VXMs as much as possible. The four

(4) 320×320 MXM planes are used for matrix multiply

operations. The 16 vector ALUs in each lane are tasked with

requantizing the int32 outputs from the MXM to produce

int8 results which are streamed through an activation function

ReLU [8]. From the perspective of both performance and

power, when possible we want to chain the results from one

functional slice (eg. MXM) to the input of another functional

slice (eg. VXM) eliminating the read and write operations

to store the intermediate results to MEM. Figure 10 shows a

plot of power consumption as the program executes, layer by

layer. The spikes in the power correspond to cycles where we

perform four (4) simultaneous conv2d operations in a regime

where we saturate the TSP’s arithmetic throughput.

A. Explicitly managing memory

To maximize stream concurrency, the compiler allocates

memory for a tensor’s concurrent stream operands into sepa-

rate MEM slices — as streams propagate through the MEM

system they “pick up” operands from the MEM slices en route

to the MXM. This fine-grain memory management required

that we expose the various levels of memory concurrency in

the ISA allowing the compiler to explicitly schedule individual

banks in each MEM slice. There are use-cases where we

simultaneously read operands from one bank and write

results to the other bank in the same slice. As an example, the

transpose instruction takes 16 input streams and produces

16 output streams with the rows and columns transposed.

By exposing the bank concurrency within each MEM slice,

we take advantage the pseudo-dual-ported SRAM for dual

read/write access per slice with a read of inputs from one

153

bank and a write of the results to the opposite bank of the

SRAM. An example of this concurrency is shown in Figure 11,

which shows the different operations (read, write, transpose,

rotate, etc) in a max pooling operation. From Figure 11 the

solid lines show operand flow and dotted-line shows result

data flow. We see the 16 concurrent streams are read from

memory by Read(1) and sent to the SXM where they undergo

a transposition of their elements, and 16 stream results flow

back to MEM where they are commited to SRAM by Write(1).

From this figure, it is evident that each operation is preceded

by read instructions to provide the stream operands and

followed by a write to commit the results back to MEM.

Conventional CPUs rely on a memory hierarchy to implic-

itly move data between caches to service load/store operations.

Cache hierarchies introduce a reactive agent in the data path

and the undesired unpredictability, or non-determinism, in the

data path to provide the illusion of sequentially consistent

memory transactions within the memory hierarchy. The TSP’s

MEM system is unlike a conventional CPUs. Instead, we

provide a thin layer of memory management that is used to

identify the memory concurrency on an operation by operation

basis. As an example, the code below shows the memory

management for a transpose operation; an instruction that take

16 streams as input and creates 16 streams of output. The

malloc function returns a tensor of addresses allocated across

16 memory slices, one for each concurrent stream.

1 # Read from 16 slices onto 16 streams

2 # Transpose data

3 # Write from 16 streams into 16 slices

4 import groq as g

5 tensor = g.random_tensor(shape=[1024, 320],

6 dtype=g.Int8, layout=[64, 16])

7 streams_16 = tensor.read(streams=range(16))

8 streams_16_t = g.transpose16(streams_16)

9 out_addrs = g.malloc(shape=[1024, 320],

10 layout=[64, 16])

11 streams_16_t.write(out_addrs)

Listing 2. Memory management.

B. Resource bottlenecks

To maximize value of on-chip resources we want to fully

utilize the most expensive resources, which in the TSP’s

case is the MXM’s four (4) 320x320 MACC arrays and

the MEM slices feeding them. In our implementation of

ResNet50 we found that the available ALU resources were

well-balanced between the most computationally expensive

operations (convolution and matrix multiply) which were able

to stream results at full bandwidth through the VXM to

perform requantization and ReLU operations in preparation

for the next layer’s operations. There were limited situations

where the VXM ALU resources could not stream at the full

bandwidth due to number of operations that needed to be

performed by the VXMs (ie. depth of operations in a software

pipeline), the throughput delay was short, or minimized by the

parallelism across VXM ALUs and the concurrency available

within each ALU for Int8 data.

C. Optimizations

The first revision of ResNet50 utilized algorithms that

distribute operations across the full chip to take advantage of

the compute performance of the MXM and VXM. A common

pattern in ResNet50 is Read → Conv2D → Requantize →

ReLU → Write. The tensor sizes in ResNet50 layers are large

enough to continuously stream data through the MXM and

VXM for up to several hundred cycles at a time. The next

pipeline is not able to start until the functional slices be-

came available for computation. The full tensor was streamed

through the pipeline and written to memory as a delay before

streaming the results through the next pipeline.

This approach to pipeline the different layers left resources

under utilized at the beginning and end of the streaming

operations as latency bubbles were created as the pipeline

filled and emptied. The initial memory allocations prevented

starting the next pipeline when the previous pipeline was

emptying due to memory slice contention. By adjusting the

memory allocation patterns of input and output tensors to

distribute the data across multiple slices. Interleaving banks

within the memory slice was carefully orchestrated so that we

were able to read a previous pipeline’s output from memory

before the previous pipeline had completed writing its results.

These optimizations further reduced the overall latency of our

ResNet50 implementation by approximately 5,500 cycles to

our current performance of 20.4K IPS.

D. Quantization

For our initial implementation of ResNet50 we selected a

post-training layer-based symmetric int8 quantization strategy

for convolutions and matrix multiplies. The MXM accepts int8

or fp16 inputs and accumulates to int32 or fp32 respectively.

These values are then requantized back to int8 or fp16. The

VXM has fp32 capacity to stream at the same rate of output

produced by the 4 MXM planes. This approach enabled higher

precision across operations between matrix multiplies and

convolutions improving the model’s overall precision. This

resulted and a smaller quantization loss of 0.5% compared to

quantizing each operation. This initial approach leaves room to

improve. The streaming architecture has capacity for an axis-

based asymmetric quantization approach which will be used

on future revisions and will reduce quantization accuracy loss.

E. Model Accuracy

The MXM has capacity for 320×320 matrix multiply. The

channel depths of the layers in ResNet50 are powers of 2.

The input and output channel depths of convolutions determine

the dimensions of the weights. The misalignment between the

320×320 capacity and the 256×256 dimensions of weights

split across multiple passes under-utilizes the MXM. By fitting

the model to the capacity of the MXM we are able to increase

the number of computations without additional latency.

We trained an alternative version of ResNet50 with in-

creased channel depths to take advantage of MXM capac-

ity. We found the additional weights contributed to higher

accuracy in the fp32 model. The standard ResNet50 trained

154

to an accuracy of 75.6% Top-1 and 92.8% Top-5 while the

alternative version, taking full advantage of the 320-element

VL, trained to an accuracy of 77.2% Top-1 and 93.6% Top-5.

This encouraging result demonstrates how to exploit additional

model capacity when using the maxVL of 320 to improve

accuracy for the same computational cost and latency.

F. Deterministic performance

The TSP’s hardware eliminates arbiters and other reactive

elements in the data path, making performance deterministic

and precisely predictable from run-to-run execution. Within

the ResNet50 model we can determine the exact latency

of each layer. ResNet101 and ResNet152 match ResNet50’s

structure with the exception of a repeated set of additional

layers. From the demonstrated performance of ResNet50 on

the TSP we can project the performance of ResNet101 and

ResNet152 to the cycle. Based on our current ResNet50

implementation our ResNet101 throughput will be 14.3k IPS

and ResNet152 throughput will be 10.7k IPS.

V. DISCUSSION

This section describes initial proof-points and performance

results of mapping the ResNet50 [27] v2 image classification

model to our underlying tensor streaming processor. To preface

our discussion, the authors would like to point out that we

received silicon back from the fab in July of 2019, just five (5)

months before the ISCA paper deadline. In that brief timespan,

we validated A0 silicon and implemented ResNet50 on a new

architecture, compiler, assembler, and tool chain for debugging

and visualization. Nevertheless, our initial implementation of

ResNet50 was a proof-point and reference model for compiler

validation, performing an inference query of the ResNet model

in < 43µs, yielding a throughput of 20.4K images per second

with each image sample being a separate query (ie. batch size

of 1). That represents a 2.5× speedup relative to the Google

TPU v3 [44] large batch inference. Perhaps more importantly,

the TSP has an inference latency of only 49 µs for a single

image sample, which is nearly a 5× reduction in end-to-end

latency compared to Intel/Habana’s Goya [1] inference chip

which takes 240 µs for batch 1 inference [44].

Fig. 9. Roofline diagram showing arithmetic throughput (at 1 GHz core clock)
varying with offered load.

Fig. 10. Power usage for ResNet50 layers.

a) Operating regimes: The roofline diagram [57] in

Figure 9 provides an intuitive framework for understanding

the different operating regimes of the chip, limited by either

(i) on-chip memory bandwidth, or (ii) arithmetic performance

as delineated by the sloped peak in the diagram. The sloped

region indicates where the TSP becomes memory bandwidth

bound loading weights into the MXM array for a subsequent

conv2D or MatMul. The “roofline peak” indicates the satu-

ration point where the arithmetic units are operating at peak

utilization and we are subsequently arithmetically limited.

b) Matrix operations: Matrix operations are the

workhorse of ML workloads, and the MEM slices can read

409,600 weights from memory and install them into the four

(4) 320×320 MXM arrays in less than 40 cycles including

SRAM and on-chip network transit delay! This is only

possible because the MEM slices deliver 32 1-byte stream

operands for each of the 320 parallel lanes, or 10 TiB/s of

operand stream bandwidth into the MXMs. The labeled data

points are measured results with model weights laid out in

MEM so that we locate them toward the middle of the chip

in MEM slices — that is, ideally the compiler will layout

tensors in MEM slices so that data transit from memory slice

MEMi to MXM is minimized.

c) On-chip network: Typically, on-chip communication

has been carried out by routing packets [19] among cores,

whereby packets undergo routing, arbitration, and output port

scheduling, and as such often incur conflicts, thus introducing

nondeterminism and requiring flow control [16], [17]. How-

ever, on each tick of the core clock, the TSP propagates stream

values by one stream register hop in the direction of flow as

shown in Figure 4. The TSP hardware does not track the origin

or destination slice, instead streams simply flow (propagate)

Eastward or Westward until they fall off the edge of the chip or

are overwritten by a functional slice. In contrast to this more

conventional on-chip network, the TSP uses stream registers

(numbered in Figure 4) within each MEM to move data in the

X-dimension (superlane), and uses the SXM to move data in

the Y-dimension on-chip through lane permutation.

155

Fig. 11. Example instruction schedule for 3x3 max pool in ResNet50.

VI. RELATED WORK

GraphCore’s IPU [25] uses more than 1200 cores each with

256 Kibytes of SRAM storage, approximately 300 Mibytes

of capacity for model parameters. However, GraphCore’s IPU

uses bulk-synchronous communication, which performs an

implicit synchronization. In contrast, our stream programming

model does not require explicit synchronization of producer

and consumers, except once at the beginning of the program.

Coarse-grain reconfigureable architectures (CGRAs) [47]

focus on the highly regular communication patterns and image

transforms that make ML workloads embarrassingly data

parallel. They map tensor operations to underlying hardware

primitives of pattern memory unit (PMU) and pattern compute

unit (PCU). The Stanford Imagine [35] and Merrimac [18]

stream supercomputer map stream constructs to the underly-

ing programming hierarchy of a local register file and each

compute cluster has access to its own bank of a stream register

file for communication between clusters. In contrast, the TSP

architecture does not have any local register files, or FIFOs

for communicating, instead relying on a chip-wide set of

streaming registers for communicating results between the

processing elements in each functional slice.

Prior research [5], [9], [23], [26], [32], [33], [38], [51]

reduces off-chip communication by leveraging processing in

memory, variable bit width, compression, or locality-aware

design. Since the TSP contains large amount of deterministic

memory, we avoid frequently accessing off-chip memory.

Several prior proposals explore pruning based on sparsity [45],

[60], based on model- or domain-specific data patterns [4],

[22], [24], [28]–[30], [36], [41], [50], [54], [61], [62], or

communication optimizations [39], [40], [53]. The TSP does

not use such optimizations to maintain a strictly deterministic

execution time and power profile.

VII. CONCLUSION

In this paper, we have introduced a novel hardware archi-

tecture of the first-generation Groq tensor streaming processor

(TSP). The TSP architecture reorganizes a conventional 2D

mesh of cores into a functionally-sliced tiled microarchitecture

that scales from a minVL of 16-elements to a maxVL of

320-elements. It is able to exploit dataflow locality within a

superlane to dramatically reduce latency. The abundant on-chip

memory bandwidth is able to concurrently feed the four (4)

MXM arrays of 320×320 MACC (multiply-accumulate) cores

for MatMul and conv2D operations, which are the workhorses

of many ML applications. Further, each of the 320 parallel

lanes have access to 16 powerful vector processors, for a total

of 5,120 vector ALUs on-chip, capable of 32-bit fixed and

floating point operations. Supporting both int8 and fp16 native

data types allows a single-chip solution for both quantized

inference models and model training with floating point.

Modern ASIC technology yields ≈25 billion transistors on

a single die. Broadly speaking, we are spending transistors on

(1) fixed or floating-point ALUs for arithmetic, and (2) storage

and communicating data among the available ALUs. We want

to maximize the number of ALUs that we can stream operands

into at full bandwidth. In effect, our “conversion rate” for how

well the architecture can extract value from the underlying

CMOS technology is measured by the number of deep learning

operations we can perform (ie raw performance) normalized

for transistor count. The first-generation Groq TSP (at 1 GHz)

in 14nm ASIC and packaged as a PCIe CEM form factor,

yields a peak performance of 820 TeraOps/sec from 26.8B

transistors on-chip — 30K deep learning Ops/sec/transistor.

Comparatively, Volta 100 which is capable of 130 TeraFlops

of mixed-precision arithmetic, from 21.1B transistors in 815

mm2 implemented in a 12nm ASIC node — yielding 6.2K

156

Ops/sec/transistor. Compared to leading GPUs [42], [44], [59],

the TSP architecture delivers 5× the computational density for

deep learning ops. We see a direct speedup in real application

performance as we demonstrate a nearly 4× speedup in batch-

size-1 throughput and a nearly 4× reduction of inference

latency compared to leading TPU, GPU, and Habana Lab’s

GOYA chip.

ACKNOWLEDGEMENTS

With any new endeavor where the starting point is simply an
idea, a lot of people and effort goes into synthesizing that idea
and bringing it to fruition. We would like to thank Christopher
Clark, Sushma Honnavara-Prasad, Greg Thorson, and Srivi
Dhruvanarayan for early contributions to the project. We also
want to thank Michelle Tomasko for encouraging publishing
these early results in the face of difficult engineering sched-
ules.

REFERENCES

[1] Habana Lab’s GOYA inference chip. https://habana.ai/wp-content/
uploads/pdf/habana labs goya whitepaper.pdf.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: A System for Large-Scale Machine Learning. In Symposium on

Operating Systems Design and Implementation (OSDI), pages 265–283,
Savannah, GA, November 2016.

[3] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S.
Schreiber. HyperX: Topology, Routing, and Packaging of Efficient
Large-Scale Networks. In Conference on High Performance Computing

Networking, Storage and Analysis (SC), pages 1–11, 2009.

[4] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Es-
maeilzadeh. SnaPEA: Predictive Early Activation for Reducing Com-
putation in Deep Convolutional Neural Networks. In International

Symposium on Computer Architecture (ISCA), pages 662–673, 2018.

[5] Berkin Akin, Zeshan A. Chishti, and Alaa R. Alameldeen. ZCOMP: Re-
ducing DNN Cross-Layer Memory Footprint Using Vector Extensions.
In International Symposium on Microarchitecture (MICRO), pages 126–
138, 2019.

[6] George Almasi. PGAS (Partitioned Global Address Space) languages.
Encyclopedia of Parallel Computing, pages 1539–1545, 2011.

[7] Alexey Andreyev. Introducing data center fabric, the next-generation
Facebook data center network. https://code.facebook.com/posts/
360346274145943.

[8] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee.
Understanding deep neural networks with rectified linear units. arXiv

preprint arXiv:1611.01491, 2016.

[9] A. Azizimazreah and L. Chen. Shortcut Mining: Exploiting Cross-Layer
Shortcut Reuse in DCNN Accelerators. In International Symposium on

High Performance Computer Architecture (HPCA), pages 94–105, 2019.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
Machine Translation by Jointly Learning to Align and Translate. In
International Conference on Learning Representations (ICLR), 2015.

[11] Luiz Andre Barroso. Warehouse-Scale Computing. In International

Conference on Management of Data (SIGMOD), 2010.

[12] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, An-
dreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets,
and Ben Verghese. Piranha: A Scalable Architecture Based on Single-
chip Multiprocessing. In International Symposium on Computer Archi-

tecture (ISCA), pages 282–293, 2000.

[13] Luiz Andre Barroso and Urs Hoelzle. The Datacenter As a Computer:

An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 1st edition, 2009.

[14] Luiz André Barroso and Urs Hölzle. The Case for Energy-Proportional
Computing. IEEE Computer, 40(12):33–37, December 2007.

[15] Cerebras CS-1. http://cerebras.net.

[16] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann, San Francisco, CA, 2004.

[17] William J. Dally. Virtual-Channel Flow Control. IEEE Transactions on

Parallel and Distributed Systems, 3(2):194–205, 1992.

[18] William J Dally, Francois Labonte, Abhishek Das, Pat Hanrahan, Jung-
Ho Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan Jayasena, Ian Buck,
Timothy J Knight, et al. Merrimac: Supercomputing with streams. In
Supercomputing (SC), pages 35–35, 2003.

[19] William J. Dally and Brian Towles. Route Packets, Not Wires: On-chip
Inteconnection Networks. In Design Automation Conference (DAC),
pages 684–689, 2001.

[20] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, Quoc V. Le, and Andrew Y. Ng. Large Scale Distributed Deep
Networks. In Advances in Neural Information Processing Systems, pages
1223–1231. 2012.

[21] Jeffrey Dean, David Patterson, and Cliff Young. A New Golden Age in
Computer Architecture: Empowering the Machine Learning Revolution.
IEEE Micro, PP:1–1, 01 2018.

[22] Chunhua Deng, Fangxuan Sun, Xuehai Qian, Jun Lin, Zhongfeng Wang,
and Bo Yuan. TIE: Energy-efficient Tensor Train-based Inference Engine
for Deep Neural Network. In International Symposium on Computer

Architecture (ISCA), pages 264–278, 2019.

[23] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaauw, and Reetuparna Das. Neural
Cache: Bit-serial In-cache Acceleration of Deep Neural Networks. In
International Symposium on Computer Architecture (ISCA), pages 383–
396, 2018.

[24] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N.
Vijaykumar. SparTen: A Sparse Tensor Accelerator for Convolutional
Neural Networks. In International Symposium on Microarchitecture

(MICRO), pages 151–165, 2019.

[25] GraphCore Intelligence Processing Unit IPU.
https://www.graphcore.ai/posts/how-to-build-a-processor-for-machine-
intelligence-part-2.

[26] Sumanth Gudaparthi, Surya Narayanan, Rajeev Balasubramonian,
Edouard Giacomin, Hari Kambalasubramanyam, and Pierre-Emmanuel
Gaillardon. Wire-Aware Architecture and Dataflow for CNN Accelera-
tors. In International Symposium on Microarchitecture (MICRO), pages
1–13, 2019.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In Computer Vision and

Pattern Recognition (CVPR), pages 770–778, 2016.

[28] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher. Morph: Flexible
Acceleration for 3D CNN-Based Video Understanding. In International

Symposium on Microarchitecture (MICRO), pages 933–946, 2018.

[29] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher.
ExTensor: An Accelerator for Sparse Tensor Algebra. In International

Symposium on Microarchitecture (MICRO), pages 319–333, 2019.

[30] Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Ed-
ward Suh. Boosting the Performance of CNN Accelerators with
Dynamic Fine-Grained Channel Gating. In International Symposium

on Microarchitecture (MICRO), pages 139–150, 2019.

[31] Intel AVX 512 Instructions. https://software.intel.com/en-
us/articles/intel-avx-512-instructions.

[32] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist:
Efficient Data Encoding for Deep Neural Network Training. In Inter-

national Symposium on Computer Architecture (ISCA), pages 776–789,
2018.

[33] Hanhwi Jang, Joonsung Kim, Jae-Eon Jo, Jaewon Lee, and Jangwoo
Kim. MnnFast: A Fast and Scalable System Architecture for Memory-
augmented Neural Networks. In International Symposium on Computer

Architecture (ISCA), pages 250–263, 2019.

[34] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

157

Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snel-
ham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In International

Symposium on Computer Architecture (ISCA), pages 1–12, 2017.
[35] Brucek Khailany, William J Dally, Ujval J Kapasi, Peter Mattson,

Jinyung Namkoong, John D Owens, Brian Towles, Andrew Chang, and
Scott Rixner. Imagine: Media Processing with Streams. IEEE Micro,
21(2):35–46, 2001.

[36] H. Kim, J. Sim, Y. Choi, and L. Kim. NAND-Net: Minimizing
Computational Complexity of In-Memory Processing for Binary Neural
Networks. In International Symposium on High Performance Computer

Architecture (HPCA), pages 661–673, 2019.
[37] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Mi-

croarchitecture of a high-radix router. In ISCA ’05: Proceedings of the

32nd Annual International Symposium on Computer Architecture, pages
420–431, Madison, WI, USA, 2005. IEEE Computer Society.

[38] Alberto Delmás Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone
Stuart, Omar Mohamed Awad, Patrick Judd, Mostafa Mahmoud, Milos
Nikolic, Kevin Siu, Zissis Poulos, and Andreas Moshovos. ShapeShifter:
Enabling Fine-Grain Data Width Adaptation in Deep Learning. In
International Symposium on Microarchitecture (MICRO), pages 28–41,
2019.

[39] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. Schwing,
H. Esmaeilzadeh, and N. S. Kim. A Network-Centric Hardware/Al-
gorithm Co-Design to Accelerate Distributed Training of Deep Neural
Networks. In International Symposium on Microarchitecture (MICRO),
pages 175–188, 2018.

[40] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing,
and Jian Huang. Accelerating Distributed Reinforcement Learning
with In-Switch Computing. In International Symposium on Computer

Architecture (ISCA), pages 279–291, 2019.
[41] M. Mahmoud, K. Siu, and A. Moshovos. Diffy: a Déjà vu-Free Differ-

ential Deep Neural Network Accelerator. In International Symposium

on Microarchitecture (MICRO), pages 134–147, 2018.
[42] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng,

and Jeffrey S Vetter. Nvidia Tensor Core Programmability, Performance
& Precision. In International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 522–531, 2018.
[43] Stephen W Melvin and Yale N Patt. A Clarification of the Dynam-

ic/Static Interface. In International Conference on Systems Sciences,
1987.

[44] MLPerf results. http://mlperf.org.
[45] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,

B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. SCNN: An
accelerator for compressed-sparse convolutional neural networks. In
2017 ACM/IEEE 44th Annual International Symposium on Computer

Architecture (ISCA), pages 27–40, 2017.
[46] David A. Patterson and John L. Hennessy. Computer Architecture:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[47] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. Plasticine: A Reconfigurable Architecture For Parallel Pa-
terns. In International Symposium on Computer Architecture (ISCA),
pages 389–402, 2017.

[48] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,

[50] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos
Nikolic, Kevin Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas
Moshovos. Laconic Deep Learning Inference Acceleration. In Inter-

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. A Reconfigurable Fabric for Accelerating
Large-scale Datacenter Services. In International Symposium on Com-

puter Architecuture (ISCA), pages 13–24, 2014.

[49] Steve Scott, Dennis Abts, John Kim, and William J. Dally. The
blackwidow high-radix clos network. In Proceedings of the 33rd Annual

International Symposium on Computer Architecture, ISCA ’06, page
16–28, USA, 2006. IEEE Computer Society.
national Symposium on Computer Architecture (ISCA), pages 304–317,
2019.

[51] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson
Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit Fusion: Bit-level
Dynamically Composable Architecture for Accelerating Deep Neural
Networks. In International Symposium on Computer Architecture

(ISCA), pages 764–775, 2018.

[52] James E. Smith. Decoupled Access/Execute Computer Architectures.
In International Symposium on Computer Architecture (ISCA), pages
112–119, 1982.

[53] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen. HyPar:
Towards Hybrid Parallelism for Deep Learning Accelerator Array. In
International Symposium on High Performance Computer Architecture

(HPCA), pages 56–68, 2019.

[54] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li. Prediction Based Execution
on Deep Neural Networks. In International Symposium on Computer

Architecture (ISCA), pages 752–763, 2018.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. CoRR, abs/1706.03762, 2017.

[56] D. Wentzlaff, P. Griffin, H. Hoffmann, Liewei Bao, B. Edwards,
C. Ramey, M. Mattina, Chyi-Chang Miao, J.F. Brown, and A. Agarwal.
On-Chip Interconnection Architecture of the Tile Processor. Micro,

IEEE, 27(5):15–31, September-October 2007.

[57] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An
Insightful Visual Performance Model for Floating-Point Programs and
Multicore Architectures. Technical report, Lawrence Berkeley National
Lab (LBNL), Berkeley, CA (United States), 2009.

[58] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine
Translation. CoRR, abs/1609.08144, 2016.

[59] Rengan Xu, Frank Han, and Quy Ta. Deep Learning at Scale on
NVIDIA V100 Accelerators. In Performance Modeling, Benchmarking

and Simulation of High Performance Computer Systems (PMBS), pages
23–32, 2018.

[60] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke.
Scalpel: Customizing DNN Pruning to the Underlying Hardware Paral-
lelism. In International Symposium on Computer Architecture (ISCA),
pages 548–560, 2017.

[61] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager
Pruning: Algorithm and Architecture Support for Fast Training of Deep
Neural Networks. In International Symposium on Computer Architecture

(ISCA), pages 292–303, 2019.

[62] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough.
Euphrates: Algorithm-SoC Co-design for Low-power Mobile Contin-
uous Vision. In International Symposium on Computer Architecture

(ISCA), pages 547–560, 2018.

158

