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Groq has taken an entirely new architectural approach 
to accelerating neural networks. Instead of creating a small 
programmable core and replicating it dozens or hundreds 
of times, the startup designed a single enormous processor 
that has hundreds of function units. This approach greatly 
reduces instruction-decoding overhead, enabling the initial 
Tensor Streaming Processor (TSP) chip to pack 220MB of 
SRAM while computing more than 400,000 integer multiply-
accumulate (MAC) operations per cycle. The result is per-
formance of up to 1,000 trillion operations per second 
(TOPS), four times faster than Nvidia’s best GPU. Initial 
ResNet-50 results show a similar advantage. The chip can 
also handle floating-point data, allowing it to perform both 
inference and training. The startup is now sampling the 
TSP, and we expect production shipments to begin around 
midyear. 

Even general-purpose processors have long since aban-
doned large monolithic CPUs in favor of multicore designs. 
One challenge with creating a physically large CPU is that 
clock skew makes it difficult to synchronize operations. 
Groq instead allows instructions to ripple across the proces-
sor, executing at different times in different units. As Figure 1 
shows, they flow first into a set of function units called 
Superlane 0, which executes these instructions. In the next 
cycle, they execute in Superlane 1, while Superlane 0 exe-
cutes a second group of instructions. This technique sim-
plifies the design and routing, eliminates the need for syn-
chronization, and is easily scalable; the TSP chip features 
20 superlanes. 

Within each superlane, data flows horizontally. In fact, 
the TSP continually pushes it across the chip on every clock 
cycle. Again, this simplifies the routing and allows a natu-
ral flow of data during neural-network calculations. As the 
figure shows, memory is embedded with the function units, 

providing a high-bandwidth data source and eliminating the 
need for external memory. The result is somewhat like a sys-
tolic array of heterogeneous function units, but the data only 
moves horizontally while the instructions move vertically. 

Because the architecture lacks caches, branch predic-
tion, and similar mechanisms, it’s fully deterministic, mean-
ing programmers can calculate throughput even before run-
ning their applications on the chip. But this approach places 
a heavy burden on the compiler, which must comprehend 
the twin pulses of instruction flow and data flow while opti-
mizing function-unit utilization. The compiler must sched-
ule all data movement, manage the memory and function 
units, and even manually fetch instructions. Groq’s compiler 
already enables utilization similar to that of Nvidia GPUs, 
and the company expects further improvements as its soft-
ware matures. The software tools accept models developed 

Figure 1. TSP conceptual diagram. In this new architecture, 
instructions flow downward through identical function units, 
pipelining the operations. Data flows across the processor, 
allowing the program to perform different operations. 
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in TensorFlow, and the company is developing drivers for 
other popular frameworks. 

Difficult to Grok 
The entire TSP executes a single instruction stream, so we 
consider it one processor core. But it’s effectively a 144-wide 
VLIW architecture, issuing one gross instructions per cycle 
to control the superlane. As Figure 2 shows, the TSP super-
lane is actually two sets of mirrored function units divided 
into what Groq calls the east hemisphere and the west 
hemisphere. Each function unit contains multiple subunits 
that accept instructions, as the figure shows. For example, 
the vector unit contains 16 ALUs that are individually con-
trolled.  

From a programmer’s perspective, data is organized 
into streams, which physically comprise one byte per lane 
(320 bytes). The architecture supports 32 eastward streams 
and 32 westward streams. Each stream automatically pro-
gresses in its designated direction on every cycle, moving 
32 bytes per lane. An instruction typically operates on data 
from different streams. For example, ADD S1, S2, S3 adds 
each value in stream 1 to the corresponding value in stream 
2 and stores the results in stream 3. Thus, instead of a fixed 
set of 32 registers, each function unit operates on a moving 
set of 32 values. 

 A superlane comprises 16 lanes. Each instruction is 
performed on all 16 lanes at once, and then in the next super-
lane in the subsequent cycle, and so forth. Thus, over 20 
cycles, each instruction executes on all 320 lanes across the 
20 superlanes, so it effectively becomes a 320-byte SIMD op-
eration having a 20-cycle pipeline. Because the architecture 
lacks register files, the compiler must ensure the streaming 
data is available to the function unit at the designated time 
to execute the designated instruction. 

The lane structure is optimized for INT8 data, but 
larger operands (INT16, INT32, FP16, or FP32) can be 
formed by combining streams. This approach enables the 
compiler to operate on 320-element vectors for all data 
types. To simplify the hardware, the wider data types must 
be assigned to adjacent streams (e.g., S0, S1, S2, S3) along 

naturally aligned boundaries. For high reliability, the super-
lane applies a 9-bit error-correction code (ECC) across all 
16 lanes, correcting nearly all errors; the chip logs these 
errors and reports them to host software. 

Look Ma, No Register Files! 
The central vector unit contains 16 ALUs per lane. Each 
ALU can perform a 32-bit calculation using aligned groups 
of four stream bytes as operands. In addition to the usual 
arithmetic and logical operations, these ALUs can convert 
between integer and floating-point formats. They also per-
form the common normalization functions ReLU and tanh 
as well as exponentiation and reciprocal square roots, allow-
ing programmers to build their own normalization func-
tions. Although the chip’s 5,120 vector ALUs can produce a 
total of 20 TOPS, we exclude them from the total TOPS val-
ue because they aren’t MAC operations. 

The matrix units handle the heavy computation. Each 
one contains 320 MAC units per lane that can be grouped 
into 20 supercells. Each MAC unit has two 8-bit weight reg-
isters and two 32-bit accumulators. On each cycle, it multi-
plies the stored weight values by a pair of activation values 
from the streaming data. Each 16x16 supercell can compute 
an integer partial sum in one cycle and a complete 320-
element fused dot-product in 20 cycles. The MAC unit can 
instead perform a single FP16 MAC, but these operations 
require two cycles, reducing throughput by 75% relative to 
INT8 operations. Each hemisphere has 320x320 MAC units 
producing 409,600 INT8 operations or 102,400 FP16 op-
erations per cycle. Using all 32 streams in each direction, 
the TSP can load all 409,600 weight registers in less than 
40 cycles. 

The switch units can reshape tensor data to better suit 
the compute units. For example, it can rotate or transpose a 
stream of data across the lanes. The unit can duplicate bytes 
to fill a vector or zero any of the vector elements to pad val-
ues. The switch units also perform an important function as 
the only units that can communicate between superlanes. 
Every unit has two sets of lane shifters that can move data up 
or down (north/south) to adjacent superlanes. 

Figure 2. TSP superlane block diagram. Every superlane is bilaterally symmetric with an east side and a west side. It contains 16 lanes, 
each of which is 8 bits wide. Data flows from east to west and from west to east. 
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Each memory unit contains 5.5MB of SRAM divided 
into 44 slices (banks) of 128KB apiece. The memory unit can 
perform two 16-byte reads and two 16-byte writes per cycle, 
as long as they access different banks, allowing it to both 
source and sink data in two directions (east and west) across 
all lanes in a superlane. Combining the 20 superlanes pro-
duces 110MB of SRAM per hemisphere. Like the data mov-
ing through the superlanes, the SRAM is also ECC protect-
ed, creating a highly robust design. 

A 320-Lane Superhighway 
The memory units also store VLIW instructions, which are 
2,304 (144x16) bytes wide. The program manually fetches 
instructions when the memory units are otherwise idle; 
instruction fetches require less than 10% of the total SRAM 
bandwidth. Instructions are decoded and loaded into queues, 
allowing the program to prefetch. To reduce code size, the 
REPEAT N instruction repeats the previous instruction N 
times. Since NOP is the most common instruction, the pro-
gram can specify it to last for N cycles. 

The initial TSP chip contains 26.8 billion transistors on 
a massive 725mm2 die built in 14nm ASIC technology. As 
Figure 3 shows, the die area splits about evenly between 
memory and compute units (not counting I/O). Instruction 
control requires only 3% of the die area. The chip contains 
an extra superlane that’s normally unused, but it can map 
into the system to replace any superlane that has a manufac-
turing defect; this redundant feature ensures high yield for 
such a large die while adding only 4% to the die area. 

The TSP’s large on-chip SRAM avoids the need for ex-
ternal memory, so it lacks DRAM controllers and interfaces. 
The chip includes a x16 PCI Express Gen4 interface to con-
nect to the host processor. (Current Xeon processors are 
limited to PCIe Gen3, but we expect Intel to introduce a 
Gen4-capable Xeon later this year.) Groq provides software 
that runs on an x86 host processor to download the neural-
network program (instructions) and data to the TSP; the 
accelerator can then autonomously execute the model and 
return results to the host. 

Groq Rolls Over Competitors 
Although the TSP provides an impressive 205 teraflop/s for 
FP16 data (with FP32 accumulators) at 1.0GHz, it provides 
four times more INT8 operations than FP16 operations. 
Thus, we expect the chip will serve mainly for inference. 
Some users prefer INT16 or FP16 for inferencing certain 
models, so the TSP can handle these data types as well. The 
220MB of on-chip memory can hold models as big as Bert-
base (110 million parameters); larger models must be divid-
ed across multiple chips. 

After just a few months of testing initial silicon, Groq 
achieved 20,400 images per second (IPS) for ResNet-50 in-
ference. As Figure 4 shows, that performance is more than 
double Nvidia’s best reported score for its flagship V100 
GPU and also exceeds results for Habana’s Goya, the fastest 

merchant accelerator available on the basis of this metric. 
The TSP still trails Alibaba’s HanGuang 800, but because the 
Chinese cloud vendor uses that ASIC only for its own data 
centers, it doesn’t compete directly with Groq. The start-
up achieved this ResNet-50 score while running the TSP at 
900MHz, so it hopes to do better over time with improve-
ments in both clock speed and software. Its touted 1,000 
TOPS requires a 1.25GHz clock speed. 

One advantage of the TSP architecture is that it doesn’t 
require large batches for optimal performance. The single-
core chip achieves peak throughput while processing one 
image at a time. By contrast, Nvidia requires a 128-image 

Figure 3. Groq TSP die layout. Built in 14nm CMOS, the 
725mm2 chip has 20 superlanes plus an extra superlane for 
redundancy. Instruction control requires only 3% of the die 
area. Diagram not to scale. 

Figure 4. ResNet-50 inference performance. Groq’s initial 
ResNet-50 score exceeds that of all merchant products ship-
ping today, but it falls short of Alibaba’s in-house ASIC. All 
data is for maximum batch size, but the TSP operates at the 
same IPS even for batch=1. (Data source: vendors) 

V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix
V Memory S MatrixMemorySMatrix

Instruction Control

PCIe and Other I/O

78,563

20,400
15,453

7,907

1,000

2,000

4,000

8,000

16,000

32,000

64,000

In
fe

re
nc

es
/S

ec
on

d
(lo

g 
sc

al
e)

Alibaba
HanGuang

Groq
TSP

Habana
Goya

Nvidia
V100



  4 Groq Rocks Neural Networks 

 January 2020 
 

© The Linley Group  •  Microprocessor Report  

batch to reach 7,907 IPS; for batch=1, the V100 delivers just 
1,156 IPS, giving the TSP a much bigger advantage of 18x. 
Small batches are important for real-time applications to 
minimize latency: for ResNet-50, the TSP’s latency is just 
0.05ms, versus 0.87ms for the V100 at batch=1 and 16ms at 
batch=128. Even Goya requires 0.24ms for batch=1. 

Microarchitecture Extremes 
Both Alibaba and Habana have released limited architecture 
information, so we compared Groq’s architecture to the 
V100 and to Graphcore’s C2 accelerator, which contains two 
of that company’s custom deep-learning chips. All three 
accelerators dissipate about 300W, as Table 1 shows, and all 
three feature huge die built in the same process node. 

The microarchitectures are different, however. The 
core counts range from one for the TSP to more than a 
thousand for the Graphcore chip (2,432 total for the card). 
Core count affects the software’s complexity: Graphcore’s 
compiler must divide a single neural network into thousands 
of tasks that can be allocated among the many tiny cores (see 
MPR 9/17/18, “Graphcore Makes Big AI Splash”). The 
Groq compiler can instead run a single task on the TSP, al-
though it must still allocate work across the many parallel 
function units. Nvidia takes a middle road, instantiating 80 
cores of moderate complexity in its Volta architecture (see 
MPR 6/12/17, “Nvidia’s Volta Upgrades HPC, Training”).  

Unlike the other two accelerators, however, the V100 
has relatively little on-chip memory (256KB of registers per 

core and 6MB of shared cache), so it requires an expensive 
high-speed memory subsystem. By eliminating most of the 
hardware-scheduling logic and relying on short data con-
nections instead of registers, Groq’s chip provides far more 
memory and compute performance than Nvidia’s within 
similar die area and power. 

The Graphcore chip is optimized for floating-point 
performance, and the two-chip card achieves slightly better 
flop/s than the TSP at the same power, although it requires 
twice as much silicon to do so. Graphcore mainly targets 
neural-network training, which exploits its FP capability, but 
the startup has produced lackluster benchmark results using 
its initial software stack and hasn’t even published ResNet-50 
numbers (see MPR 12/9/19, “Graphcore Up and Run-
ning”). For integer-based inference tasks, Groq offers far 
more operations per second than the C2 card.  

Not a Google Clone 
Jonathan Ross, a Google TPU architect, and other members 
of the TPU team founded Groq in 2016. The startup (located 
in Mountain View, of course) has raised $67 million to fund 
its initial chip, and the staff has grown to about 60 people. 
Many watchers expected Groq to quickly crank out a TPU 
clone, but it instead took the time to develop a unique archi-
tecture. The design bears some resemblance to the TPU—
both have a single massive core comprising systolic function 
units—but it achieves greater performance per transistor 
and per watt. Compared with the TPU, the TSP’s heteroge-
neous function units provide more flexibility, although its 
320x320 MAC array is even bigger than the TPU’s (see MPR 
5/8/17, “Google TPU Boosts Machine Learning”). 

Nvidia, the dominant vendor of deep-learning acceler-
ators, is Groq’s primary competition. The GPU architecture 
is widely derided because it isn’t optimized for neural net-
works, but the V100 delivers strong AI performance, partic-
ularly when using its tensor cores. On the basis of ResNet-50 
scores, however, the TSP more than doubles the V100’s best 

performance, and it’s an order of magnitude fast-
er for latency-sensitive workloads. Indeed, on this 
model, Groq’s accelerator is the fastest available on 
the merchant market. By the time the TSP reaches 
production, however, Nvidia is likely to have debut-
ed its next-generation Ampere architecture, which 
should come closer to the TSP’s throughput.  

Having delivered its first chip, Groq’s new 
challenge is to demonstrate a wider range of models 
on its architecture. Although the TSP hardware is 
deterministic, throughput depends on the compil-
er’s ability to optimally schedule operations. The ar-
chitecture simplifies this task in some ways, but soft-
ware must contend with a 144-wide statically sched-
uled VLIW machine comprising 320-byte SIMD 
units. Fully utilizing its huge MAC arrays to com-
pute various-size tensors is challenging. And like 
all new accelerator vendors, Groq must broaden its 

 Groq TSP  Nvidia V100 Graphcore C2 

Core Count 1 core 80 cores 2x 1,216 cores 
Max Clock Freq 1.0GHz* 1.5GHz 1.6GHz 
Peak Tflop/s (FP16) 205Tflop/s 125Tflop/s 250Tflop/s 
Peak TOPS (INT8) 820 TOPS 250 TOPS Not applicable 
Chip Memory 220MB 20MB† 2x 300MB 
Board Memory None 32GB HBM2 None 
Host Interface PCIe Gen4 x16 PCIe Gen3 x16 PCIe Gen4 x16 
Board Power (TDP) 300W 300W 300W 
ResNet-50 Inference 20,400 IPS 7,907 IPS Undisclosed 
ResNet-50 Latency 0.04ms 0.87ms Undisclosed 
IC Process 14nm TSMC 12nm TSMC 16nm 
Die Area 725mm2 815mm2 2x 806mm2 
Production Mid-2020‡ 4Q17 4Q19† 

Table 1. Deep-learning-accelerator comparison. Even though all three de-
signs consume similar die area and power, the TSP stands out in both peak 
performance and ResNet-50 throughput. *Final product speed could be 
higher; †register-file capacity. (Source: vendors, except ‡The Linley Group 
estimate) 

Price and Availability 

Groq is now sampling the TSP to select customers; 
we expect production availability around mid-2020. The 
company withheld pricing. For more information, access 
www.groq.com. 
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software support beyond the handful of TensorFlow opera-
tions that ResNet-50 requires, enabling customers to run 
production-level models on the TSP. Building out the soft-
ware will take time and another funding round. 

Groq rejects the manycore approach, which makes the 
hardware easier to design but the software more difficult. 
Achieving the opposite extreme—a single gigantic core—
required substantial innovation. The startup has delivered 
on its vision with a chip that achieves excellent integer and 
floating-point performance and outperforms all merchant 
competitors on at least one neural network. The single-core 
design is particularly well suited to real-time cloud services 
that require low-latency inferences. That’s something every-
one should be able to grok. ♦ 

 

To subscribe to Microprocessor Report, access www.linleygroup.com/mpr or phone us at 408-270-3772. 


